Bisphosphonates suppress periosteal osteoblast activity independently of resorption in rat femur and tibia.

نویسندگان

  • Ken Iwata
  • Jiliang Li
  • Helene Follet
  • Roger J Phipps
  • David B Burr
چکیده

Recent studies demonstrate that bisphosphonates suppress bone resorption by leading to apoptosis of the osteoclast and inhibiting the differentiation to mature osteoclasts. The influence of bisphosphonates on bone formation is unknown, although it has been hypothesized that bisphosphonates inhibit osteoblast apoptosis and stimulate osteoblast proliferation and differentiation in vitro, leading to increased bone formation. The purpose of this study was to investigate the effect of bisphosphonates on bone formation. We administered risedronate at 0.05, 0.5 or 5.0 microg/kg/day or alendronate at 0.1, 1.0 or 10 microg/kg/day subcutaneously for 17 days to 6-month-old female Sprague-Dawley rats. Control rats were given a daily subcutaneous injection of saline. Following sacrifice, the femoral and tibial mid-diaphyses were harvested and mineralizing surface (MS/BS), mineral apposition rate (MAR) and bone formation rate (BFR/BS) were measured on periosteal and endocortical surfaces. In the femur, periosteal MAR was significantly lower in all treatment groups (22-29% for risedronate, 26-36% for alendronate) than in control. In the tibia, periosteal MAR and BFR of all treatment groups were significantly lower (41-50% for risedronate, 43-52% for alendronate) than in the control group. Because the periosteal surfaces of these bones are only undergoing bone formation in modeling mode, our results show that bisphosphonates suppress bone formation independently of bone resorption. Because this effect is seen on periosteal MAR rather than on periosteal MS/BS, we hypothesize that bisphosphonates affect the activity of individual osteoblasts at the cell level. This may help to explain the reason that the anabolic effects of teriparatide are blunted when administered concurrently with or following a course of bisphosphonates in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of enoxaparin on histomorphometric parameters of bones in rats.

Enoxaparin sodium is a low-molecular-weight heparin. It is not clear whether the risk of development of osteoporosis after administration of low-molecular-weight heparins is lower than after administration of standard heparin. The aim of the present study was to investigate the effects of enoxaparin on histomorphometric parameters of bones in female Wistar rats (13-15 weeks old at the beginning...

متن کامل

196. Bone Marker Response in Chronic Diffuse Sclerosing Osteomyelitis Treated with Ibandronate

Background: CDSO is a condition affecting predominantly the mandible and long bones of young females, characterised by episodes of intractable pain on a background of chronic discomfort. The aetiology is unknown, but the bone sclerosis is associated with abnormal osteoblast and osteoclast function. Methods: We report 3 cases in which symptoms and biochemical markers responded to treatment with ...

متن کامل

Indirect osteoblast differentiation by liposomal clodronate

Bisphosphonates impair function of osteoclasts and prevent bone resorption, the mechanism of which has been studied extensively. However, the possible effects of bisphosphonates on chondroblast differentiation and calcium deposition by osteoblasts have only been demonstrated recently. Moreover, cells from monocytic lineage are capable of stimulating osteoblast proliferation. Hence, susceptibili...

متن کامل

MULTIPLE MYELOMA Myeloma bone disease

Bone destruction is a hallmark of multiple myeloma, and recent studies demonstrated a strong interdependence between tumor progression and bone resorption. Increased bone resorption as a major characteristic of multiple myeloma is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activat...

متن کامل

Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation.

Connexin 43 (Cx43) mediates osteocyte communication with other cells and with the extracellular milieu and regulates osteoblastic cell signaling and gene expression. We now report that mice lacking Cx43 in osteoblasts/osteocytes or only in osteocytes (Cx43(ΔOt) mice) exhibit increased osteocyte apoptosis, endocortical resorption, and periosteal bone formation, resulting in higher marrow cavity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2006